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We try to prove rigorously that the perimeter of the large Witten-Sander cluster 
does not scale as the square root of its area, by making a forced comparison 
with the ill-posed Hele-Shaw problem of fluid dynamics. The attempt is not 
completely successful; nevertheless some interesting consequences of the com- 
parison are derived. 

KEY WORDS: Diffusion-limited aggregation; harmonic measure; Hele-Shaw 
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1. I N T R O D U C T I O N  

The Witten-Sander model, or diffusion-limited aggregation as it is usually 
called, is an enormously appealing growth process defined on Z 2 via the 
prescription 

P(cn+l\Cn={y}lcn=7)= lim Px(S(r,)=y) (1.1) 

In this formula the ck are finite subsets of vertices of Z 2, S is simple ran- 
dom walk, and r~ is the first time S encounters a nearest neighbor of the 
subset 7- If we set c I = {0}, then c, is a random, connected cluster of n 
lattice sites which contains the origin, and one would like to describe the 
shape of a typical cluster for large values of n. It is expected that these large 
clusters are highly ramified and of low density, having diameter of greater 
order of magnitude than the square root of the number of vertices. These 
expectations are supported by physical theory and a lot of computer 
simulation. The interested reader may consult the original paper (27) as well 
as collections (21,22) and a survey. (26) 

Not  surprisingly, there is a dearth of rigorous statements about the 
behavior of large clusters. A notable exception is the theorem of 
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Kesten (11'12/ to the effect that if r n is the radius of cluster on, then there is 
a fixed finite constant c such that 

P(lim sup n-2/3rn <~ c) = 1 (1.2) 
n ~ o o  

That is to say, if cn does consist of a system of long arms and projections, 
these cannot grow in length faster than the two-thirds power of the number 
of vertices. The proof of (1.2) is based on an analogue, for the potential 
theory of Z 2, of Beurling's circular projection theorem. It yields an upper 
bound on the hitting probabilities of clusters 7 which appear in (1.1), the 
bound depending only on the radius of 7 and being otherwise independent 
of its shape. [I t  should be mentioned that this growth process can be 
defined on Y d, d>~ 3, and Kesten (12) proves upper bounds on rn similar to 
(1.2) but with dimension-dependent r a t e  rt-Z/d.] 

The question of lower bounds on r n is most attractive, but it would 
seem to depend on shape-independent lower bounds on hitting 
probabilities. Readers can convince themselves that there are no nontrivial 
such bounds. Even shape-dependent lower bounds seem so formidable as 
to be quite discouraging. So, to make a statement to the effect that the 
linear size of the large cluster really is of greater order of magnitude than 
the square root of its area we must take another tack. 

An early observation about the Witten-Sander model is that it seems 
to be a discrete, stochastic version of the Hele-Shaw problem from the 
theory of two-phase flow. (18) Physically speaking, the Hele-Shaw problem 
is to describe the time development of a bubble of air in water between two 
parallel plates under an applied suction from the perimeter of the plates 
which is taken to be very far from the bubble. If the gap between the plates 
is so small that the problem is treated as two-dimensional and the pressure 
inside the air bubble is taken as constant, the Hele-Shaw cell can be 
approximated by a moving boundary problem for •,, the unbounded 
region of the plane occupied by water. If v(x, t) is the fluid velocity in (2 t 
and u(x, t) is the pressure, then, assuming the fluid is incompressible, 

v(x, t) = 2 Vu(x, t) in f2, 
(1.3a) 

= 2 ~ u(x, t) on Of 2, v(x, t). ne,(x ) One, 

and 

Au(x, t) -- 0 in g?t 

u(x, t) = a~ca,(x) on 0f2, 

u ( x , t ) ~ l  loglx[ as [xl--* 
ATe 

(1.3b) 
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Here na, is the outward normal vector field of t?f2t, ~ce, is the curvature, 
is surface tension, and 2 = b2/lt, where b is the gap between the plates and 
# is the fluid viscosity. ~ If we set 2 = 1 and a = 0, then u(x, t) is the Green 
function for f2, with pole at infinity and so 

h(O,)(dx) - ~ .(x, t) o~,(ax) 
urta, 

is the corresponding Poisson kernel. Of  course, h(f2,) has a probabilistic 
interpretation as the first hitting distribution on ~?f2 t of a Brownian particle 
released at + oo. So it is in this case that gTj, the region occupied by air, 
can be thought of as the continuum version of the Witten-Sander 
cluster cn. 

To place these two problems on an equal footing, consider a sequence 
of Witten-Sander models on the scaled lattice ( I / N ) 2  2 and replace each 
finite cluster CN(n ) c ( l /N)  Z 2 with the closed set 

I I { ]2 
CN(n)= 0 EN(y); EN(y)=S+ (1.4) 

y~ <u(-) 2N'  2-N 

Then we have a sequence of Markov  chains with transition probabilities 

Prob(Cu --* CN U EN(y) ) = h*( CN)(y ) (:.5) 

where h*(Cu) is a probability measure supported by the nearest neighbors 
in ( l / N ) :  2 of CN. For  the Witten-Sander model h*=hRN w, the hitting 
distribution of random walk from infinity, as in (1.1). One could consider 
other choices, for example, 

h~(CN)(y)={~ICNnEN(y)h(CN)(dz)' y G C~v c: ( l /N)  7/2 
(1.6) 

otherwise 

which is the probability that a Brownian particle, rather than a random 
walker, hits CN near to y. If, as a first step in a passage to the limit, we 
consider the possible states CN as measures lcN(X)dx, then since each 
elementary transition CN ---> C~v u EN(y ) adds area 1/N 2 to the current state 
of the chain, we should permit N 2 such transitions per unit of real time to 
force a unit increase in area per unit time. This is the law of large numbers 
scaling for cluster area and  is a necessary condition for comparison of these 
chains with the Hele-Shaw problem. However, to force a passage to this 
limit we will require the continuity of the map 

l~(dx) ~ h(spt #)(dx) (1.7) 
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where # is a measure on ~2, spt # is its closed support, and h(spt p) is 
harmonic measure of sptl~ as seen from infinity. Unfortunately, this 
assignment is not continuous, in general. Consider, for example the sets 

U={x:]x]<<.l}, V={(xl,  0):O<<.x~<2} 
and (1.8) 

V, = {(x 1, x2): 0 ~< x ~ ~< 2, ix 2] <~ 1/l} 

Clearly 1 u• vr(x) dx converges to 1 v(x) dx, while h(Uw Vt)(dx) converges 
to h(Uw V)(dx), which is distinct from h(U)(dx), since the needle V has 
nonzero length. However, Theorem 2.5 below gives a sufficient condition in 
terms of cluster perimeter for such continuity. Thus, if we wish to pick up 
the Hele-Shaw problem in the limit, we are obliged to track not only 
cluster area, but also cluster perimeter. It is important to note, however, 
that from the point of view of perimeter the scaling above is the central 
limit scaling. (We make a further remark on this point in the last section.) 

Now the zero-surface-tension Hele-Shaw problem is ill-posed: it has a 
weak formulation as an nonlinear backward heat equation as follows. (See 
also Remark 3.5 below.) By integrating a time-dependent, rapidly vanishing 
test function r over ~2 t and using Eqs. (1.3a) and (1.3b) we obtain, in the 
case ). = 1 and a = 0, 

O 

tt  

Now since r vanishes at infinity, the Riesz decomposition for potentials (or 
It6's formula) gives, for each t, 

f r t) h(~,)(dx)=f Ar t) u(x, t) dx (1.10) 

where 

Furthermore, if each f2 t is open and connected, then 

l~,(x) dx= H(u(x, t) ) dx (1.11) 

H(u) = { 1, u > 0 
O, u<~O 

Hence, on integrating (1.9) from 0 to t, we obtain 

fo l ~? s),H(u(.,s)))ds (r -~sr 

f: = - (Ar u(., s)) ds (1.12) 
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or in other words 

H(u(x, t) )= -~u(x, t) (1.13) 

Equation (1.13) is not expected to have solutions for arbitrary initial 
domains. Thus one surmises that the ramified shape of large Witten-Sander 
clusters may be due to the fact that the complements of these clusters are 
trying to approximate an ill-posed moving boundary problem. 

Now the main idea of the paper is just this: assume that the perimeter 
process of an appropriately scaled sequence of Witten-Sander models on 
(l/N) ~2 is well enough behaved so that the corresponding sequence of 
martingale problems can be proved to pass to the limit, yielding a solution 
to an ill-posed problem. If the limit of the initial clusters is not of a special 
class, this leads to a contradiction. The contradiction then proves that the 
scaled models in fact are poorly behaved and a qualitative statement about 
large clusters is obtained. 

Unfortunately, a technical point intervenes to prevent the complete 
success of this gambit: the limit martingale problem is in general a 
weak form of the ill-posed Hele-Shaw cell as in (1.12) plus an extra term 
having to do with the possibility of condensation of fluid bubbles (see 
Theorem 3.4). 

Thus, it develops, in a way made precise in Theorem 3.8, that for the 
sequence of scaled Witten-Sander-type models, either ( i ) the cluster 
perimeter is badly behaved, or (ii) the perimeter is well behaved, but, in the 
limit, bubbles condense immediately. 

Our approach is open to at least two criticisms. First, it is not at all 
apparent that cluster perimeter is the correct measure of linear size with 
which to work. Its use is determined by our method rather than by its 
being a priori an intrinsically useful quantity in terms of which to estimate 
the growth of cluster size. Second, we cannot determine whether or not 
bubbles do condense immediately. Deciding the question would seem to 
require some definite estimates of discrete harmonic measure and these are 
not forthcoming, at least from this author. 

The next section contains a result on the continuity of harmonic 
measure as a function of domain, which is used to pass to the continuum 
limit. Section three concerns itself with martingale problems and the 
possible behavior of solutions of the ill-posed Hele-Shaw problem. The 
final section includes a brief discussion of models incorporating a form of 
surface tension and ends with some further questions. 
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2. H A R M O N I C  M E A S U R E  

The point of this section is to introduce the terms with which we 
discuss passage to the continuum limit. At the Nth step we consider a 
growth process on (l/N) Z2, the state of which is a finite connected cluster 
of sites cN (connectedness in the sense of lattice paths from site to site) or 
equivalently a piecewise C 1 domain 

I 1 1 12 
CN = ~) EN(y); EN(y)= y + 2N'2~V (2.1) 

y ~ C N  

Def in i t ion 2.1. (a) A grid-square domain is any finite union of 
squares of the form (2.1); (b) If C is a piecewise C ~ domain, that is, ~C is 
a finite union of C t curves of finite arc length, then the boundary measure 
of C is the measure on S 1 x ~2 defined by 

Vc(d~ dx)= [Ln~(x)[ 6~g~(~,(x))~,(d#)+ In2(x)] 6~g~(n=(~))ez(d~)] | ~rc(dx) 

where n = (n ~, n 2) is the unit normal to ~?C at x, and ~r c is the arc length 
measure on #C, the ei are standard basis vectors, and sgn is algebraic sign; 
(c) the perimeter measure of C, denoted ~'c(dx), is the marginal of Vc on 
R2, that is, for bounded continuous functions ~b, 

f ~(x) ffc(dx) : f f  1 | x) Vc(d~ dx) 

Warning. In general Vc(d~ dx) r 6,c(x)(d~) | ac(dx) and ff c(dx) r 
ac(dx) unless C is a grid-square domain. 

Let us denote by U the closure, in the space of Borel measures on 
S 1 x ~2 under weak convergence, of the set of boundary measures of grid- 
square domains determined by all finite connected clusters CN C ( l /N)Z2 
for all N >/1; and by ~F the corresponding closure of perimeter measures. 

Elements of "~ are, essentially, examples of the var~olds of geometric 
measure theory. They keep track not only of perimeter, but also of the 
oriented tangent line. When smooth domains are approximated in area by 
grid-squares, the tangent line and perimeter can be approximated only in 
a very weak sense, which is made precise in the next proposition. Boundary 
measures play an important but intermediate role in the proof of 
Theorem 2.5. 

Proposit ion 2.2. Let C be a piecewise C ~ domain. There is a 
sequence of grid-square domains CN, N>~ 1, such that (i) limN~ ~ l c u =  1 c 
almost everywhere, and (ii) limN_ ~ Vcu(d~ dx) = Vc(d~ dx). 
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ProoL Our candidate is 

cN = U EN(y) 
y ~ C r ~ ( 1 / N )  Z 2 

and certainly (i) is fulfilled by this choice. Suppose first that OC is a C ~ 
curve. Since n( . )=nc( . )  is uniformly continuous, given e>O there is 
0 < 6 ~< e such that if {zk:k <. M(6)} is a partition of c3C of mesh less than 
6 and J~,~ are the subcurves of 8C determined by the partition, then for any 
k and x, Y~J~,k, 

In(x) - n(y)l ~< e (2.2) 

Let L,, k be the segment with endpoints zk_~ and z~ and let C~ be the 
corresponding polygonal approximation to C. By the mean value theorem, 
each L,,~ is parallel to the tangent line to J~.x at some point between zk_ 
and ze, so that if n,,k denotes the constant normal vector to L~,k, then 

[n(.)--n~,kl<~e on J,,k (2.3) 

Now notice that the assignment 

f / -.--> Ig]ll ~sgn(ql) el --[- 1/721 ~sgn(q2) e2 (2.4) 

from q =  (r/~, T ] 2 ) ~ S  1 t o  measures on S 1 is weakly continuous. Since, by 
(2.3), nc~ converges uniformly to n c and ac~(dx) converges weakly to 
ac(dx), it follows that for any bounded, continuous test function 
f : S l x ~ 2 ~ ,  

lira [ ( f  V c ~ ) - ( f  Vc)l = 0  (2.5) 
~ 0  

(Here we use (~b,/z) to denote the integral of a function ~b against a 
measure/z.) 

Now let us compare Vc~ with VcN when 1/N~ e. Let Wu,~ be a corner 
point of 8CN nearest zk and let IN, k be that part of c?C N with endpoints 
wu, k_ 1 and WN,~. By (2.3), IN, k consists of at most N((n~,k{ +e)[J~,e[ + 2  
vertical segments of length 1/N and at most N([n2kl + e) [J,,k[ + 2 horizon- 
tal segments of length 1IN. (A glance at Fig. l may help.) Since the 
endpoints of Iu, k are also within distance 1IN of the endpoints of L~,k, at 
least N In~,k[ IL~,kl- 2 of these segments have normal vector sgn(n~,k)el 
and at least N[n~,kl IL~,kl--2 of these segments have normal vector 
sgn(n~,k) e 2. Observing that there is a fixed constant K such that 

J,,x ~ T~,k = {y: dist(y, L~,k) <~ Ke} (2.6) 
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~:,k ]N,k ~:,k Wn,k 

WN,k-1 

L~,k 

Zk-1 

a 

rl 1 

n 2 

b c.  

Fig. 1. (a) Diagram to aid in the proof of Proposition2.2. (b)v=nll and 
(c) d=etane<~Ke. 

h = n Z l .  

we have for nonnegative, bounded continuous functions the estimates 

flu, k f(ncN(x)' x) acu(dX) 

2 Ilfll~ 
~ < - -  + [J~,kl {([n~,kL + s) sup f(sgn(n~,k) e j, x) 

N x~ T~,k 

+ ( nzk[ + e) sup f(sgn(n~,k) e2, x)} 
x ~  Te,k 

Now, since 

fz~.~ f(nc~(X), x) acN(dX) 

--2 II f qL co inf f(sgn(n~,k) e l ,  X) 

+ [n~k inf f(sgn(nZ, k) e2, x))  
XE T~,,k 

2 
<f, VL~,~>=fL ~ EIn~,kl f(sgn(n~,k) el, x)]  a(dx) 

~,k i = l  

(2.7a) 

(2.7b) 

(2.8) 
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( f  VL,,k) also satisfies the bounds in (2.7a) and (2.7b). Using the notation 

o sc ( f  e )=  max sup[ sup f(~,  y ) -  inf f(~., y) ]  (2.9) 
s  ~e, x ]x--y[<~e I x Yl ~ 

we have then 

)(L v < , ) -  (L vc,)l 
M(6) 

k - - I  

411fll M(6) 2 M(~ 
< + Y~ Y~ [-(In~,kl + c ) I J j  sup ' oo f(sgn(n~,k) ei, X) 

N i = l  k = l  xeTz , k  

- In~,k[ [L~.kJ inf f(sgn(n~,~) ei, x)]  
x e  T~,k 

411fll~M(6) 2 i(6) 
- n~kl L~,g]J Ilfl]~ < + 2 2 [(In~,~l +e)ISo, kl ' 

N i ~ l  k = l  

M(6) 

+ ~ In~,kl )L~,k] osc(L Kc) 
k = l  

4 llfllo~m(6) 2 m r  
i ~< + ~ Y' [e I J j  + tn~,,l(lJ,,kl- [L,,kl)J [If[l~ 

N i = l  k = l  

M(6) 

+ Z In~,kl JL~,kl osc(f, Ke) 
k = l  

44]ftl~M(6) 
~< +2e  lOCI. IPfHo~ + 2(18CI-  lSC~[)Ilfl]o~ 

N 

+ lac~l osc(f, Ke) (2.10) 

Thus 

lim lim 
8 ~ 0  N ~  

P(f, YEN)-(Z v<,)I =0 

and this together with (2.5) yields the proof in case OC is a C ~ curve. In 
case 8C is piecewise C 1, the argument is entirely similar. | 

Proposition 2.3. Let CN, N~> 1, be a sequence of piecewise C 1 
domains such that limN~ ~ ffcN(dx)= a(dx) for some measure a. Then, for 
some subsequence N' and some V~"U, 

lira Vc~,.(d~ dx)= V(d~ dx) and r'(dx)=a(dx) 
N ' ~  oo 
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ProoL Since S 1 is a compact set, the sequence VcN, N >~ 1, is weakly 
compact on S 1 x R 2 if and only if Pc~, N>~ 1, is weakly compact on N2. 
Consequently, since ffcu actually converges, some subsequenee of VCN 
converges to, say, V. But then for any bounded continuous function r 

(r  V ) = ( 1 Q r  V ) =  lim ( 1 Q r  Vc,N) 
N ' ~ o o  

= lim (r  F'CN, ) = (r  o-) 1 (2.11) 
N ' ~ o o  

For a compact set C ~ R 2, write 

CC=AwB (2.12) 

where A is the unbounded, connected component of the complement of C 
(the active region) and B is the union of the bounded, connected com- 
ponents (the bubbles). If, subsequently, C appears as a function of some 
parameters, then A and B, similarly decorated, will always have the above 
relationship to C. 

D e f i n i t i o n  2.4. Let D c[R 2 be an open set and define ( i )go(x)  
to be the Green function of D with pole at infinity; (ii) ho(dx) to be the 
classical harmonic measure of ~?D as seen from infinity; and (iii) comp D 
to be the unbounded connected component of D, provided D contains the 
complement of a compact set. 

Here is the main theorem of this section, which depends crucially on 
Caratheodory's kernel theorem of conformal mapping. (2) 

Theorem 2.5. Let CN, N~> 1, be a sequence of connected grid- 
square domains in 0~ 2 and let A N = comp C u be the unbounded component 
of C~v. Suppose that for some measure a, aAu(dx) converges weakly to 
a(dx). Let A = comp(spt a)'. Then: 

(i) l imu~ ac  gAN(X) :-gA(X) pointwise on ~2. 

(ii) l imu_ ~ hAN(dx) = hA(dx) weakly. 

Furthermore, suppose l C~N(X ) dx converges vaguely to some measure p. 
Then: 

(iii) /~l~g~ >o~(dx) = H(gA(x)) dx, where 

H(u) = {10, ' u > 0  
u~<0 

is the Heaviside function. 
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Proof. Let us emphasize the fact that since C N is connected, AN is 
simply connected when viewed as a subset of the Riemann sphere ~;; thus, 
conformal mapping methods can be applied. We show that as sets, AN, 
N~> 1, converge in Caratheodory's sense to A. Caratheodory's theorem 
then assures us that standard conformal maps f~v:/~(0, 1 )c~(2  which 
represent A N converge uniformly on compact subsets of B(0, 1) c to a 
conformal map which represents A. We then show that this implies 
pointwise convergence of Green functions and weak convergence of the 
corresponding harmonic measures. 

To this end, we recall Caratheodory's notion of convergence of 
domains. (2~ If DN, N~> I, is a sequence of simply connected open sets in ~; 
containing a point z o in common, its kernel K is the connected component 
containing z 0 of the strong limit inferior of the DN'S , that is, of 

s-lim inf DN= 1~)int ~ D/ 
N - + a 0  N = I  j ~ N  

= z:3e>O,N>Os. t .B(z ,e)  D~ (2.13) 

When Zo = +oo we can write K = c o m p s - l i m  inf~v+~ DN. The sequence 
D N, N~> 1, is said to converge if the kernel of any subsequence equals the 
kernel of the full sequence, in which case the sequence converges to its 
kernel. (Note that the kernel of a subsequence contains the kernel of the 
full sequence.) 

The proof of the theorem rests on the next three lemmas. 

Lemma 2.6. I f l i m N ~  VAN(d~ dx)= V(d~ dx) and A =comp(spt F') ~', 
then AN converges to A in Caratheodory's sense. 

Proof. Let r(N), N~> 1, be a subsequence of N =  1, 2, 3,..., and let 
At(N) be the corresponding subsequence of AN. Let Xo be a point of 
s-l iminfN+~At(N), SO that for some E > 0  and N o > 0 ,  B(xo, e )c  
ON~NoA~(N). If ~b is any continuous function supported in B(xo, e), then 
( 1 | ~b, V,%~ ) = 0 for N ~> No ; hence B(xo, ~) c (spt V)2 It follows that 

~) s-lim inf A~<N~ c (spt V) C (2.14) 
N ~ o o  

On the other hand, let x o ~ (spt F)q This set is open so for some e > 0, 
B(xo, ~) c (spt V)q Let us prove first that 

for all sufficiently large N, 

either B(xo, e /4 )cAN or B(xo, e / 4 ) c A  u (2.15) 
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Note that for large N, gA:v cannot be contained in B(xo, e), for this would 
contradict B(xo, ~) c (spt V) c. Thus, for large enough N, there are points 
Xu. 1G~AN(5 B(Xo, e,) c. Next, it is no loss of generality tO assume 

lim inf dist(~3AN, B(x o, e/4)) = 0 
N ~ o o  

for otherwise (2.15) would hold. So there is a subsequence z(N) and points 
X~(N),ae~Av(N)Cqg(Xo, e/2). Let J~(m be an arc of ~Az(N)with endpoints 
x~(N),z and X~(N),> Then Jz(U) 0 B(Xo, e)\B(Xo, ~/2) contains a subset of arc 
length at least e/2, which contradicts the fact that B(xo, e)c  (spt V)"; 
hence, it is the case that 

lim inf dist(dAN, B(xo, a/4)) > 0 
N ~ e o  

and so (2.15) does hold. 
Now let us show that 

either B(xo, ~/4) c A N for all large N 

or B(xo, e /4 )c  -~ A u for  all large N 
(2.16) 

Let ~b be a continuous function supported in B(xo, e/4) such that 
fc~(x) d r =  1. Define a vector field 7 on R 2 by 7(x)=  (1, ~ O(x 1, u)du) and 
a function f on S i x  N2 by f(~,  x ) = - ~ . y ( x ) .  Then f is bounded and 
continuous. Since Au is a grid-square domain, we have by the divergence 
theorem for large N, 

(f,, Vau > = - f  nAN(X), y(X) aau(dx ) 

= fax div 7(x) dx 

= fa O(x) ax 
N 

= 1 A~(xo) (2.17) 

due to (2.15). By hypothesis, ( f  VAu), and hence lax(x0), converges. But 
this implies the desired statement (2.16). 

Finally, let 

D = ~ s-lira inf A~(N), E =  s-lim inf AN, F =  s-lim inf-d~v 
N ~ c o  N ~ o o  N ~ o  
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Lines (2.14) and (2.16) state that 

Dc(sp t  P)C c E w  F (2.~8) 

and so 

comp D c comp(spt g) ', c comp(E <o F) (2.19) 

Now K = c o m p E  is the kernel of AN, N>~ 1, and we have K c c o m p D  
by definition. However, E and F are disjoint sets and + ~ ~ E, in the 
sense of C, hence c o m p ( E w F ) = c o m p E = K .  Therefore, by (2.19), 
K= comp(spt F-)q | 

Lemma 2.7. If limN~ ~ aau(dx)= a(dx) and A =comp(spt  a) ~, 
then A N converges to A in Caratheodory's sense. 

Proof. Suppose A is a limit point of AN, N~> 1, that is, suppose that 
for some subsequence ,(N), A,(N) converges to A in Caratheodory's sense. 
By Proposition 2.3, l i m u + ,  VA,,(N I = V, for some further subsequence , ' ,  
and V= r Thus ,4 = A by Lemma 2.6 as applied to  A T,(N ). | 

k e m m a  2.8. If AN converges to A, in Caratheodory's sense, and A 
contains a neighborhood of + c~, then gAev converges pointwise to ga on 
~2 and hau converges weakly to h A. 

Proof. Recall that iffN: B(0, l ) ' - - ,  C, resp. f,  are the Riemann maps 
representing A~v, resp. A, with a fixed normalization, say, f ( +  oo)=  +Go 
and F'(0)  is real, where F(z)=f(1/z),  then the corresponding Green 
functions can be written 

gAN(X) = log IOu(X)l, ga(x) = log J~b(x)] (2.20) 

where @N, ~ are the inverse functions Offu, f (ref. 10, p. 365). 
Let us show that if lira s u p N ~  gAN(ZO)>0, then zo~A. Indeed, in 

this case, there is a subsequence z(N) and a constant 0 < ~c < 1 such that 

~c<~ga~(N)(Zo)<~ c 1, hence e~<~[~(N~(Zo)l<~e ~-~ (2.21) 

With the notation (~(x) = ~b~(N)(z0), we see that (~(N) E B.(0, e~) c = f :  Since F 
is a compact set, in the sense of the Riemann sphere C, there is a further 
subsequence still denoted by z such that ( = l i m z e ~  (~(~v) in C. By 
Caratheodory's theorem, f~(N) converges uniformly on F to f and so 
Zo = limee~ co f~(~v/((~;v)) = f ( ( ) ,  which shows that Zo ~ A. 

It follows that if zoCA, then l imu~ oo gau(ZO)= 0. But ga ( ' )  vanishes 
continuously on c~A, and it is identically zero off .g. So pointwise 
convergence holds good in AC. 



1130 March 

On the other hand, suppose Zo e A. Because A is connected, there is a 
path 7 in A with + oo and Zo as endpoints. By compactness of 7 in C there 
are finitely many balls B(y~, ~), 0 <<, i <~ L, with centers on 7 such that if 

L 

T= ~) B(y~, e~) U B(yo, eo) ~ (2.22) 
i = 1  

Then ~ T c A  and hence T ~ A  u for all large N. If g r ( ' )  is the Green 
function of the tube T with pole at + oo, then 

O<gT(z)<--.min{gAN(z), gA(z)}, z ~ T  (2.23) 

Thus, since gT(Zo) = 2 > 0, we have ~N = ~N(Zo) E B(O, eX/2) ~, which is a 
compact set in C;. It follows that limN~ ~ ~N = ( =  ~b(zo), for otherwise, if 
some subsequence ~r were to converge to ( ~  we would have, by 
uniform convergence in B(0, e; /2f  

Zo= lira f r ( N ) ( ~ ( N ) ) ~ - f ( ( ) 5 ~ Z O  (2.24) 
N ~ c x ~  

Thus we have 

gA(Zo)=log I~1 = lira log [~NI = lim gAu(Zo) (2.25) 
N ~ o o  N ~  

To check the convergence of hAN, let ~b be a compactly supported 
smooth function. By the Riesz decomposition (ref. 6, pp. 11 and 52) 

1 
+(x)-- j  (yl h: tdyt- f d0(y) g:N(Y)+ (2.26) 

where the superscript denotes the location of the pole. In particular, for 
x ~ + oo we obtain 

f ~(Y) hA~(dY)=1 1 AO(y) gAu(Y) dy (2.27) 

Now the vague convergence of hAN t o  h A follows easily from Eq. (2.27) and 
the pointwise convergence of gAN to gA" Since AN, N>~ 1, and A contain 
neighborhoods of infinity, the m e a s u r e s  hAN and hA are all supported in 
some fixed ball, hence the vague convergence implies the apparently 
stronger weak convergence. | 

Items (i) and (ii) of the theorem are now direct consequences of the 
previous three lemmas. To get item (iii) just note that by the proof of 
Lemma 2.8, lira u ~ oo gA~(z) = gA(z) > 0 for every z ~ A. So if ~b is compactly 
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supported in A, then because AN converges to A in Caratheodory's sense, 
spt q3 c A N for all large N and 

(~b, lc; ) = (~b, lax ) = (~b, H(gAN)) = f  ~b(y)dy (2.28) 

Hence 

( ~ , # ) =  lim (~b, l c } ) = I ~ ( y ) d y = ( ( b , H ( g A ) )  | 
N ~ o o  

C o r o l l a r y  2.9. Harmonic measure is a continuous function of the 
perimeter measure of connected sets: Let a e ~  and define h(a)(dx)= 
ha(dx), where A=comp(spto) c. Let -~#1 be the space of probability 
measures on ~2 under weak convergence. Then h: ~ --+ dr is a continuous 
function. 

3. M A R K O V  C H A I N S  A N D  T H E  H E L E - S H A W  P R O B L E M  

Consider the sequence of Markov chains whose states are finite grid- 
squares 

CN= {,9 EN(y), CN a f i n i t e s u b s e t ~  (3.1) 
N 

Y ~ E N  

with transition probabilities 

Prob(CN + C N k,..) EN(y) ) = h*( CN)(y) (3.2) 

where hTv(CN) is a probability measure on the nearest neighbors of CN 
R w  which approximates harmonic measure; for example, h u , the random 

walk hitting probabilities, or 

hBNM(CN)(Y)=fec~EN(ylh(CN)(dz)' Y e C N ~  I--Z2N (3.3) 

and 0 otherwise, which is the probability that a Brownian particle, rather 
than a random walker, hits CN near y. In this section we examine the 
possible convergence of these chains as N ~ oo. 

For bounded continuous functions ~b: ~2._+ ~, smooth functions 
f :  IR + ~, and finite clusters CN, define the generator LN by the formula 

LNf((q~, CN))= 2 Ef((~b, CNUEN(y)))  
y ~ (1/N) Z 2 

-- f (  (O, C,~))] N2h*(CN)(y) (3.4) 

822/67/5-6-19 
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[here we use the notation (~b, CN) for (~,  1CN(" ) dx) =~CN~)(X) dx] and 
set 

~Nf(((J, CN)) = ~ {f((qJ, CNUEN(y)))  
y e (1/N) •2 

-- f (  (O, CN) )I: NZh*(CN)(y) (3.5) 

Then there is a unique Markov chain, with measure values, such that 

M~O(t) ~ f (  ((J, XN(t) ) ) -- f (  ((~, XN(O))) 

_ f t LNf( (0, XN(S- ) ) ) dAN(S) (3.6) 

is a mean-zero martingale, for all such q$ a n d f  (Here AN(S)= [NZs]/N2.) 
A standard computation (see, e.g., ref. 8) shows that M~ ~ has quadratic 
variation process 

(1) 
[ M ~ ] ( t ) =  gNf(((D, XN(S-)))dAN(S)+O - ~  (3.7) 

In what follows, we let ~/t denote the space of a-finite, Borel measures 
on N2 considered, for the sake of convenience, as Schwartz distributions; 
that is, convergence of measures is just convergence of integrals against 
Schwartz functions. This is, essentially, just vague convergence. Let 
D([0, T], J~) be the Skorokhod path space and C([0, T], Jr the sub- 
space of continuous paths. Frequently we will use the notation 

X N ( t  ) = 1CN(t)(X ) dx  or  ~) ,  X N ( t ) )  = (~ ,  C N ( t ) )  (3.8) 

and 

XCu(t)=lc~N~t)(x)dx or (O,X~u(t))=f O(x )dx - (O,  Xu(t))  

If we want to display the initial state XN(O ) = 1cN(X ) dx we will write XCu N 
and j,.c,.~ The next proposition is included for the sake of emphasis. 

P r o p o s i t i o n  3.1. For any sequence of initial grid-square domains 
CN, N>~ 1, such that lcu(x) dx converges to #s~/ l ,  both sequences X cN 
and "~N~('CN'c are tight on D([0, T], Jg) and any limit point is concentrated 
on C([0, T], J//). 

Proof. According to Mitoma's theorem, r it is enough just to check 
the tightness of the real-valued processes (r XCN(t)) and (r xCu'c(t)) for 
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the Schwartz functions ~b. But the tightness of these processes follows from 
the elementary facts that, by (3.5) and (3.6), 

IMPel ( t )  ~< const - T II f'll 2 [lOll ~ N -2 (3.9) 

and that the considered processes have jumps no bigger than 1/N 2 in size 
and, from an appeal to the standard martingale, sufficient conditions as 
exposed, for example, in ref. 8 and ref. 24, Chapter 1. | 

R e m a r k  3.2. It is possible, even likely, if Witten-Sander cluster 
have diameters of greater order of magnitude than the square root of their 
areas, that any such limit point on C([0, T], ~{) is concentrated on con- 
stant trajectories, due to the circumstance that asymptotically in N, an arm 
of infinite perimeter but no area may grow immediately out to infinity. 
Thereafter, no area is added to the initial cluster in any finite part of the 
plane, as incoming Brownian particles or random walkers first meet the 
cluster at their starting point + oo. These additions are undetected by 
integrating against Schwartz functions, which of course vanish at infinity. 

Let P be any limit point guaranteed by the lemma. Naively, one would 
hope to prove that P-almost surely, the canonical process #. of 
C([0, T], rig) would solve some weak form of the Hele-Shaw problem. 
Indeed, the martingales M~ ~ converge to zero in probability thanks to 
(3.9), and of the three terms in the definition of M~ r in Eq. (3.6), the first 
two pass nicely to the limit, since for each fixed 0 ~ t ~< T the assignment 
#. ~ f ( @ ,  # , ) )  is a P-almost surely bounded, continuous function on 
C([0, T], ~//f). [Note that boundedness is due to the fact that all the 
measures XCNN(t) and XCN'c(t) are dominated by two-dimensional Lebesgue 
measure.] However, the third term, which involves harmonic measure, 
presents a problem due to the fact that the assignment 

# --, h(spt i~)(dy) (3.10) 

is not a continuous function of # s  d/{ under vague convergence. Thus, 
according to Theorem 2.5, if we wish to pick up the Hele-Shaw problem in 
the limit, we are obliged to track not only cluster area, but also cluster 
perimeter. 

For technical reasons we also require a degree of approximation of 
h(CN)(dx) by h*(CN)(dx) which is uniform in the set variable and the 
following simple lemma provides us with more than enough in case 
h*=hBu M. For the corresponding result in the more interesting case 
h* = h Rw, consult the Appendix. 
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L e m m a  3.3. Let r be a C 1 function with bounded gradient. For 
any finite grid-square CN, 

I<r . M  c h N (CN) > -- <r h(C%)>l < 
2 ]hV(bll oo 

N 

Proof. Notice that if y s (l/N) 7/2 n C~v, then 

Thus 

r h(C%) dz : r hBNM(CN)(y) 
EN(y)  

fa [r -- r  h(C~N)(dz) (3.11) 

E 
y e CrNn (1/N) ~ 2 

y e CCNm (1/N) s 2 

2 IIVr 
< ~ - -  II 

N 

(b(y) hBNM(CN)(y) -- f q~(Z) h(CN)(dz ) 

(3.12) 

If C N is a connected grid-square domain, and if we write 

C%= ANU B~v (3.13) 

as in the previous section, then we determine a pair of measures 

( l ~ ( x )  dx, rTAN(d~)) 6 dg x ~7" (3.14) 

so that the chains "'NVC~"q'~ ), N>~ 1, determine via (3.14) processes with state 
space dg x ~/~ whose probability laws QN are defined on D([0, T], dd x ~ ) .  
The next result concerns the consequence of assuming QN, N~> 1, has a 
limit point on C([0, T], d g x  yT-). We remark that by Proposition 3.1 the 
marginals of QN on D([0, T], rid) already enjoy this tightness property. 

T h e o r e m  3.4. Let (#t, a,) be the canonical process on D([0, T], 
d / x ~ )  and define At =comp(spt a,) C, the unbounded, connected 
component of the complement of the closed support of ~,. Define also 
u(x, t) = (1/2~) gA,(X), the Green function of A, with pole at + c~, and 

/ ~ , ( & )  = ~ ,  I {~( ,,~= o } ( & )  
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the measure of bubbles. If Q is any limit point of QN o n  C([0, T], J x r 
then Q-almost surely, for 0 ~< t < T, and Schwartz functions ~b, 

;0 <0, g (u( . ,  t))> - <0, H(u(. ,  0))> + <0, ~,> = - <Z0, u(., s)> ds 

Proof. The theorem follows directly from an adaptation of the proof 
of Theorem 3.3.1 of ref. 8, concerning convergence of sequences of semi- 
martingales, as applied to <0, XNCN'c(')>. Since 

<0, x~" 'c(0  > - <0, x~N'c(o)> = <0, x~N(o) > - <0, x~N(t)> 

we have from (3.4) and (3.6), 

R~(f) = <0, x~N'c(t)> - <0, x~"'"(o) > 

+foe  <0, EN(y)> N2hRW(CN(S ))(T)dAN(S) (3.15) 
y 

is a mean-zero martingale and by (3.9) its quadratic variation process 
satisfies the bound 

[R%](g) ~ K T  110112 
N2 (3.16) 

By Doob's inequality we have 

<4KT 110112 oo 
E[ sup [ROx(t)123 N2 (3.17) 

O<~t<~T 

and so the convergence of R~N(.) to the zero process in probability. 
By Theorem 2.5 and Corollary 2.9 the map ~: ~ '  x ~ --* N2 defined 

by q~(kt, a) = (<0, #>, <0, h(a)>), where h(a)(dx) = hA(&) and A = 
comp(spt o)c, is continuous. It follows that for 0 ~< s ~< t ~< T, 

~s , t (# , , f f  )=--<6,#t>--<O,]2s>-~ - <O,h(os-)> ds (3.18) 

is a real-valued function on D([0, T], . ~ x ~ F )  which is continuous on 
C([0, T], ~ x ~F) and is Q-almost surely bounded there. Just below we 
will want to be able to write R~N(t) as a function of the canonical process. 
To do this, set 

h*(a)=h~v(A), where A=comp(spt~y 
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if ~r is the perimeter measure of a grid-square domain of mesh 1IN and set 
it to zero otherwise. Introduce 

+ f] ~,, (0, EN(y)) N2h*(a, -)(y) dAN(S) (3.19) 
) .  

Then clearly R~N(t)- R~N(S) has the same distribution as ~bu.~,, under QN. 
Now let 0~ be a bounded, continuous, o~ measurable function. Then 

o = e ( 0 s [ R g ( t ) -  R~N(S)]) 

= EeU(O,q~N,s,t) (3.20) 

since R~N is a martingale. Thus, 

EQN( ~ sl~ s,,) = EQN(t]l s[ ~)s,t- I~ N,s,t'] ) 

= E"- (O, [I ( (,, h(~,-))ds 

- ~ (0, EN(y)) N2h*(os -) dAN(S) 
Y 

(3.21) 
y 1 / 

t , , _ t ,  BM (or by the Appendix if Thus, by Lemma3.3,  in the case "N- -"N 
h * =  RW hs  ), 

IEQ~(q~s~ 31 ~< 2 K  If~ll ~ (t - s) 
' N 

+ g(t - s) II~ll ~ { t -  s - JAN(t) -- AN(S)] } 
K qkV~ll ~ IAN(t) -- AN(S)L 

+ (3.22) 
N 
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hence 

lim EON~ksq),,t = 0 (3.23) 
N ~ o ( 3  

On the other hand, since 0~,q~,,t is a Q-almost surely bounded, continuous 
function 

0 =  lim EQN~sCI)s,,=EQOs~,, t (3.24) 
N ~ a o  

This, together with (3.17), shows that under Q, ~o,t is just the zero process, 
so that Q-almost surely 

((~, #t )  - @, ~o) = - (0, h(~,)) ds (3.25) 

However, the left-hand side can be rewritten, according to Theorem 2.6, as 

(~, H(u(., t))} - @, H(u(., 0)))  + @, fit} (3.26) 

and the integrand on the right-hand side, according to the Riesz decom- 
position (2.26)-(2.27), as {A~b, u(-, s ) )  and this finishes the proof. | 

Remark 3.5. We could just as well have considered the space-time 
process (t, xcN'c(t)) with generator 8lOt + L N. Then for time-dependent test 
functions ~b and assuming fix=0, s~< t, one would get as the limiting 
equation 

f f  t 8 s ) ,H(u( . , s ) )~ds  ( O ( . , t ) , H ( u ( . , t ) ) ) - ( O ( . , O ) , H ( u ( . , O ) ) ) -  ~s(~(., 
/ 

f2 = - (Aq~(., s), u(., s))  ds 

which is a weak form of the backward nonlinear heat equation: 

8 
~t H(u(x, t))= -zlu(x, t) 

This equation was also obtained from the formulation (1.3a), (1.3b) of the 
Hele-Shaw problem, where 2 = 1 and ~r = 0. l 

Let z = i n f { t > 0 : f l t > 0 }  be the condensation time, namely the first 
instant that the support of /~, contains a set of bubbles of positive 
#rmeasure. Our next result concerns the consequences which follow from 
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assuming Z > 0. The ill-posedness of this problem has also been discussed 
in ref. 5. 

T h e o r e m  3.6. Let A ,  O<~t<~T, be a one parameter family of 
unbounded, decreasing, simply connected neighborhoods of + oo and let 
u(x, t) = (1/2~z) gA,(X) be the corresponding Green functions with pole at 
+ oo. Suppose that for all Schwarz functions 0, 

(0,  H(u(., t))) - (0, H(u(., 0) ) )  = - (A0, u(,, s)) ds 

Finally suppose 8A 0 is a Jordan curve in the plane with zero Lebesgue 
measure. Then either (i) ~A0 contains an analytic arc or (ii) #A0 ~ 0At for 
all 0 ~< t ~< T and ~T hAs(SAo) ds = O. 

ProoL First suppose 8Ao\c3At ~ ~ for some 0 < t ~< T. Since OAo\OA t 
is a nonempty open subset of OAo, there exists an open subarc J ~  t~Ao with 
j ~ A t = ~ . i f  y~J ,  then forsomee>O,B(y ,e )c~Ao  -~ At, for otherwise, 
since A , ~ A o ,  there exists a sequence of radii ~ ,$0 such that 
(B(y ,e , )c~Ao)C~A,r  hence a sequence of points r  such that 
l i m , .  oo ft, = y. Because 8A t is closed, this implies y E 8A,, in contradiction 
to the fact that y E J. 

Now consider the function 

Cz 
v,(x) = )o u(x, s) ds (3.27) 

Since each u(. , t)  is continuous on R 2 (ref. 10, p. 365), vt(.) is also 
continuous and we have 

(30 ,  vt)  = (0,  H(u(.,  0 ) ) )  - (0,  ~(u( . ,  t ) ) )  (3.28) 

If 0 is supported in B(y, e), then since this ball is disjoint from At, 

(0, H(u(., t))) =fA O(x) ax=o 
t 

(0, H(u(., o)) ) = f ,,o O(x) dx 

(3.29) 

(3.30) 

Thus v t is a continuous function satisfying the equation 

1 
~Avt (x )=  1B~y.~)~0(x) in B(y, e) (3.31) 
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in weak form, and so it is a C ~ function in B(y,e) (ref. 6, p. 8). In 
particular, v, solves the equation 

zlv~ = 1 in B(y, e) n Ao (3.32) 

Moreover, since A, c Ao, we have u(x, s)>>. 0 and u(x, s ) =  0 on 0Ao. This 
implies vt(x )>~0 and vt(x ) = 0  on c3A o. So since v, is a Ckfunction in 
B(y, e) which achieves its minimum on OA o c~ B(y, e), both 

vt=O and Vv ,=0  on OAo~B(y,e) (3.33) 

Therefore, according to Theorem2.1, p. 139, of ref. 7, (3.32) and (3.33) 
imply that ~?A o n B(y, e) admits of an analytic parametrization. 

Now let us assume that OAo\~3At = ~ for all 0 < t~< T, which means 
OA0 c ~?A~. Let ~b, be a sequence of smooth, compactly supported functions 
such that 

0~<q~n~<l, ~b n-=l on 6Ao, lira ~bn=0 off 3Ao (3.34) 
n ~ o o  

(These can be constructed using the regularized distance; see Theorem 2, 
p. 171, of ref. 23.) Using again the fact that (A~b~, u(., s ) ) =  (~bn, hA,), we 
have 

f f  hAs(C~Ao) ds ~fo (~., has) ds 

=f~ (~O,,,u(.,s))ds 

= (~ , ,  H(u(., T) ) )  - ( (~,  H(u(., 0 ) ) )  

<. f O.(x) dx (3.35) 

Letting n --* oo and using the fact that ~?A 0 has two-dimensional Lebesgue 
measure zero, it develops that ~[h(A,)(OAo)ds=O, which ends the 
proof. I 

We are grateful to a referee, who pointed out to us the following 
important improvement to the previous theorem. 

P r o p o s i t i o n  3.7. Let A,, O<~t<~T, be as in Theorem3.6 and 
suppose that c~Ao has positive one-dimensional Hausdorff measure. If 
A, = comp(spt %)c for some %~ ~F', then item (ii) of that theorem cannot 
hold. 
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Proof. 
only if 

sup 

Recall that a domain B < ~2 has a rectifiable boundary if and 

{~1 1~- r  n > ~ l ; ~ O B ' i = O ' " " n ; ~ . = ~ o }  <~176  

Each collection {~0 ..... ~n} determines a piecewise C 1 domain B(~I,..., ~n) 
and a corresponding perimeter measure ff~(el,...,~,)' Since for any 
(~,/~) ~ ~2, 

I~1 +1/~1 

it follows from the proof of Proposition 2.2 that 

1 
eB(~,,...,~,)(~2)~ < ~ I ~ - ~ - ~ l  <~ eB~,,...,~,~(~ ~) 

1=1 

Hence 8B is rectifiable if and only if 

sup{ ffn(e~...., r ] n >~ 1; ~i ~ O B, i = 1,..., n; Go = ~ } < 

Each fiB(e,,..., ~,) is the limit perimeter measure of approximating grid-square 
domains; hence the supremum above can be replaced by the supremum 
over all grid-square domains which approximate each B(~I,..., ~,) as in 
Proposition 2.2. Therefore, if B=comp(spt  a f ,  where a e r  then since 
a(N 2) < m and a is the limit along a subsequence of such grid-square 
domains, 0B is rectifiable. 

Suppose 8B is rectifiable and let f :  D ~ B  be the corresponding 
Riemann map from the unit disk D. According to Theorem 10.12 of 
Pommerenke, (17) if A cSD,  then the Lebesgue measure of A is zero if 
and only if the one-dimensional Hausdorff measure of f ( A ) ~  OB is zero. 
On the other hand, since hD and Lebesgue measure on 8D are mutually 
absolutely continuous, 

hs( f (A))  = hD(A) = 0 

if and only if the Lebesgue measure of A is zero. Thus, a measurable subset 
of aB has hB measure zero if and only if it has one-dimensional Hausdorff 
measure zero. Therefore, if B = A,, then hA,(SAo)= 0 implies OAo has one- 
dimensional Hausdorff measure zero, which is a contradiction. | 

Finally, we summarize the possible outcomes of scaling a sequence of 
Witten-Sander type models. 
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Theorem 3.8. Let CN, N~>I, be a sequence of grid-square 
domains of mesh 1/N, let .IyCN'C[tN ~o, dx) = 1%(t)(x) dx be the Markov chains 
defined at (3.4)-(3.6), and let QCuU be the probability laws of (lc~(o(x) dx, 
6Au(t)(d~) ) o n  the space D([0, T],JCdxyT"). Let acu(d~ ) converge to 
Vc(d~) for some piecewise C1-Jordan domain C such that 0C contains no 
analytic arc. If the sequence cN QN , N~> 1, has a limit point Q on C([0, T], 
J//x ~ ) ,  then Q-almost surely, x = 0. 

ProoL This is a direct consequence of Proposition 2.2, Theorem 3.4, 
Theorem 3.6, and Proposition 3.7. 

4. D I S C U S S I O N  A N D  FURTHER Q U E S T I O N S  

It is well understood that the long arms of Witten-Sander clusters, as 
simulated on the computer, are due to the fact that the tips of projections 
are favored hitting sites for incoming random walkers so that existing 
projections are likely to grow even longer at the expense of other parts of 
the boundary, which become effectively screened. However, a rigorous 
statement to this effect is hard to come by because the very feature of 
interest, namely the intricately growing network of arms and projections, 
makes quantitative estimates of random walk hitting probabilities hard to 
prove. This motivates a study of the effect of regularization of the cluster 
boundary between successive additions of particles. Notice that while 
adding N 2 particles to a cluster in (l/N) ~2 adds one unit of area, it could 
add up to O(N) units of perimeter if a fixed fraction of new particles attach 
themselves at boundary sites having only one nearest neighbor in the 
cluster. A well-chosen mechanism for rearrangement of occupied sites 
might tend to detach particles having just one nearest neighbor in the 
cluster and reattach them at a site with two or more such neighbors. Then 
cluster area would be conserved but cluster perimeter decreased on 
average. Presumably such regularization would lead in the continuum limit 
to a moving boundary problem which includes a term interpretable as 
surface tension. 

A Monte Carlo algorithm for simulation of Hele-Shaw problems with 
surface tension has been proposed by Kadanoff (9) and Szep et al. (25~ and 
simulations have been carried out, with delightful results, by Liang. (15) 
Convergence of this algorithm, or perhaps some simplification of it, is an 
interesting problem which it may be possible to discuss within the 
framework outlined in the previous sections. We remark only that this 
problem bears close resemblance to the derivation of reaction-diffusion 
equations as hydrodynamic limits of interacting particle systems (e.g., 
refs. 3 and 14). Here rearrangement of boundary sites is analogous to 
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diffusion and addition of new sites by random walkers from infinity is 
analogous to reaction. Indeed this has essentially been done in ref. 4 for a 
highly simplified model of surface tension introduced by Plischke eta/. (19) 
In this model, movement of the boundary is determined by the develop- 
ment of a periodic exclusion process on 7/. Passage to the continuum limit 
corresponds exactly to the hydrodynamic limit. 

A different approach to regularization is to alter the rule for the addi- 
tion of new points to the cluster. This approach is taken by Kesten. (13~ 

APPENDIX  

The results of this section are wholly based on ideas provided to the 
author by H. Kesten. It is a pleasure to thank him for his permission to 
present the results here. 

Let D be either a domain in the plane ~2 or the complement of one. 
We consider the problem of approximating the classical harmonic measure 
of D, that is, the hitting distribution of Brownian motion, by the hitting 
distribution, on a related subset DNc (l/N)7/2, of a simple random walk. 

Let DN=Dc~ (l/N)7/2. If x~  (l/N)7/2, let e(x) be the union of the 
line segments joining x to its four nearest neighbors. Define 6~ND = 

o _ DN\C3ND. Thus D N ~  D and points {X~DN[e(x)c~DC~J} and set 0 N -  

of ON D are at a distance less than 1/N from the boundary of D. 
If ~b: ~2 ~ ~ is a smooth, bounded function, let u be the solution of the 

Dirichlet problem: 
Au(x)=O in D 

u I ~ o ( ~ )  = ~(~) 

and let UN be the solution of the discrete Dirichlet problem 

f ANblN(X)=O in D ~ 

b/N ] C3ND(~) = r 

where A N is the discrete or five-point Laplacian. Of course, u and uN 
are averages of ~b with respect to the hitting distributions of Brownian 
motion and simple random walk, respectively. Thus, estimates on 
SUpxeD u [U(X)-  UN(X)[ gauge the degree of approximation of the former by 
the latter. 

T h e o r e m  A. If UN and u are solutions to the discrete and classical 
Dirichlet problems on DN and D, respectively, then 

sup [U(X)--UN(X)[ ~ c(ll~,llo~ + ItV~ll~) N -~/" 
X@DN 

for some universal constant C independent of D, N, and ~b. 
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The following lemmas prepare us for the proof of the theorem. We use 
the notation d(x, y) for the number of lattice steps in any shortest path in 
(1/N) 2 2 whose endpoints are x and y. If xeD~ let g(x) be the number 
of steps in any shortest path in ( l /N) 7/2 having one endpoint in r and 
the other at x. In particular, 

d(x, y) <~ y) I -YI a(xN 
and 

~5(x____) ~< dist(x, OD) ~ 6(x) + 1 
, / S U  ~r 

L e m m a  AA.  Let u be the harmonic function with boundary values 
~b. Let x e D and y ~ OD. Then 

lu(x)-  ~(y)t <~ C(ll~l] ~ + ItV~ll co)Ix-  Yl ,/3 

Proof. By a translation of coordinates, we may assume that the 
boundary point y is at the origin. Let 2 =  Ix-yl  = IxI and define 
B=B(0 ,2~) ,  0 < f l < l ;  B = B ( 0 , 1 ) ;  and /3={3~ nzlzeD}. Note that we 
need only consider the case Ix[ < 1, since, by the maximum principle, the 
inequality is vacuous otherwise. In case Ixl  < 1, note that x E B since 2 < l. 
For any domain C, let %=inf{t>OlX,~C}, where X is Brownian 
motion. 

By a classical estimate of harmonic measure (e.g., ref. 17, Exercise 10, 
p. 352) 

2 (1-x-nlxl) 
~< 1 - - arcsin 

1+,~ e Ixl) 
<, C)(~ n)12 

Now it follows that for z = r e A " t o ,  

lu(x) - 4'(Y)] ~< E,~{ [ '~(L) - r ; ZB ~< ~D } + Ex{ I,~(XD - 4'(y)l; -c~ > z~, } 

<~21iO[[ooPx{mB<.ZD}-k- s u p  kb(z) -  ~b(y)[ 
Iz - xl ~< )b' 

To conclude the proof, choose/7 = 1/3. II 
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Lemma A.2. Let x E D  N with 6(x)=k~> 1. If u is the harmonic 
function in D with boundary values r then for some universal constant C, 
the following hold: 

(i) IANU(X)l <~ C(llq~llo~ + IIVOIIo~)[(k + 2)/N-11/3. 
(ii) Ifk~>2, then IANU(X)l <<. C Ilq~tl~/k 3. 

Proof. Coming first to the proof of (ii), note that 

k k + l  
, , ~  N<~ dist(x, ~ND) <~ dist(x, 0D) ~< T 

so that if x/~ < s < 2, then u is harmonic in the ball of radius k/Ns about 
x. Now define fi(y) = u[x + (k/Ns) y]. Then fi is harmonic in the unit disk 
and so can be represented as the Poisson integral of its restriction ~ to the 
unit circle. Since the third derivatives of the Poisson kernel are uniformly 
bounded on the disk of radius s/2, we have by Taylor's formula 

1 I~ (k  e l )  + fi (-~--~ el)  + ~ (k  e2 ) A NIA( X ) = - ~ 

+0( e0 40,0, ] 

c llall ~ ~ k----x-- 

As for the proof of (i), let y be a nearest point of ~D to x. Since 
dist(x,0D)~< (1 + k)/N, we have I x -  yl <~ (k + I )/N and Ix ++_eo/N- y I <~ 
(k + 2)/N, i=  1, 2. By Lemma A.1, both [u(x)-  ~b(y)l and ]u(x+_ei)-q)(y)l 
are bounded above by 

C(ll~llo~ + I]V~bl[ ~) (k@---~2) 1/3 

By adding and subtracting ~(y) appropriately in the sum defining A NU(X), 
we find IA~u(x)l is bounded above by a term of the same form but with 
a slightly larger constant. | 

I . emma A.3. For each e > 0  there exists a constant C, depending 
only on 5, such that for each k ~> 0 

sup ~ gDu(x,y)<~C(l+k)2+~log(l+k) 
X~DN 3(y)<~k 

yEDN 

where goN is the Green function for A N in DON . 
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ProoL For each x ~ D N with 6(x) <~ k, choose w = w(x) in 63NO with 
d(x, w)<~ k and define 

1 k)l +~/2} B(x)= {ZeNT/'- Ix-w(x)l  <~ Tv(l + 

and set r=min{j>~OISgr where S is simple random walk in 
( l /N) Z 2. 

First we show there is a number e = c~(e)> 0 such that if x s D x and 
6(x)~k,  then P x { r ~ O u } ~ < l - - e ,  where ~D~=min{j>~O:S/e~?ND}. 
Notice that by a translation of coordinates we can assume that w(x) is at 
the origin. Since tl = r A ~Ds~< %, the first hitting time of the origin, it 
follows from Lemma 1 of ref. 12 that n-+aN(S,^ ~) is a nonnegative 
martingale, where au(X ) = a(Nx) and a( . )  is the potential kernel of simple 
random walk on Z 2. Referring again to Lemma 1 of ref. 12, one sees that 

aN(X ) = 2 log ]Nx[ + C o + O(INx1-2) 
7~ 

for some constant Co. Arguing exactly as in Lemma 3 of ref. 12, we find 

aN(X) = Ex{au(S.); r <~ ~,gN} + Ex{aN(S.); ~ > VDN} 

P~{v • VDN} Ex{au(S~)[z ~ ZD~} 

Since [S,r >~ [1 + k[ 1 +~/2/N on {~ ~< ~DN}, it follows that 

(2/~) log [Nx] + Co + O(]Nx[-z) 
- (2/7r)log [1 + k[1+~/2 + Co + O(tl  +kl-(2+~)) 

Now, since [xf ~< k/N, this last line is bounded above by a sequence tending 
to (1 +e/2)  1 as k ~ .  Thus, Px{Z~<ZDN}~<I--e<I for some a=e(~) ,  
independently of D and of k and of x such that 6(x)~< k. 

Now, if 6(x) ~< k and D (k) = {z 6 D N [ r ~< k}, then 

y~D(k) n 0 

} - ~ - E  x 1 D ( k I ( S n ) ; ' f D N ~ T ,  
n 0 

= I + I I  
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If a = min{j/> z[Sj~ D(k)}, then by using the Markov property at time 
a, we find 

"CDN 

.~ ~ o ~ ,  ~ ~ ~ ~ sup~ o~, ~ f ~  ~ ~,~, ~,~,t 

~<(1--cQ sup ~ gDu(V, y) 
v ~ D (k) y ~ D(k) 

On the other hand, let v be a lattice point outside B(x) but one lattice 
step from it. Clearly z <~ r v = rain { j/> 0 [ Sj = v }, so that 

= ~ E~ l{yI(Sn 
y ~ B ( x )  n 0 

<. IB(x)l max 2a[N(y-  v)] 
y ~ B ( x )  

C(1 + k )  2+~ log(1 + k )  

(Sections 10 and 11 of ref. 20 may be of help at the third step.) Thus, if 

G =  sup ~ gDN(X, y) 
x ~ D (k) y c D (k) 

and K is the right-hand side above, 
that G ~< K e -  1. Finally, if x ~ DN\D (k) 
Ex gox(S,, y), hence 

we find G<<.K+(1-~)G, so 
and y ~ D (k), then gD(X, y) = 

sup 
x ~ D N  y E D ( k )  

and so the lemma is proved. | 

gDN(X, y) ~ G 

Proof  of  T h e o r e m  A. We have 

l U ( X )  - -  UN(X)t 

lU(X)- Exu( g(z Du) )l + IExu( S(V oN) ) - Exfb( S(z Du) )[ 

= I + I I  
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Now, if x ~ ~N D, then there exists y s ~?D with {x- yj ~< 1/N. By 
Lemma A.1, 

lu(x)-q~(x)t <~ lu(x)-@(y)l + t(J(y)- @(x)l 

C(ll~ll~ + IIV~lloo)Ix-yP 1/3+ IIV~ll ~ I x - y l  

<~ C ( O  ) N - 1 / 3  

where C(~b) is a short-hand for C(ll~ll~ + I!V~ll~) which we will use here 
and below. It follows that II ~< C(~b)N -1/3 as well. 

Concerning I, note that 

Exu(S(ZDN))--U(X) = ~ gDN(X, y) AN u(y) 
y E DOt 

But by Lemmas A.2 and A.3 and summation by parts, 

E g D N (  x '  Y )  Z J N U ( Y )  

y ~ D ~ 
6(y)  <~ N ~ 

~ gD~(X, y)ANU(y) 
k <~ N ~ y ~ D 0 

6(y)=k 
k + 2) 1/3 

k ~" yEDON 
6(y)=k 

= g ~ ( x ,  y) 

6(y)  <~ N ~ 

-t- E i Q k ~  ) 1/3 _ (~__3__) 1/33 E 
k <~ N ~ y e D (k} 

gDu(X, y)} 

C(4b) I N  (~'- 1)/3N(2 + e)= log N 

1 ) 2/3 k 2 + ~ 1 +~5-5 2 (k+3  log ( l+k)  

C(~) N [(7 + 3C)~- 1]/3 log N 

822/'67/5-6-20 
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Similarly, 

E goJv( x' Y) ANU(y) 
y E DON 

6(y) > N ~ 

~ C ( O )  E k 3 E g o N (  x ,  Y )  
k >~ N ~ y ~ D 0 

a(y)=k 

~C(~) (IN + 1 ]3 E gDN (X '  Y )  
) 6(y) <~ N ~ 

+ ~ [ k - 3 - ( k + l )  -3]  ~. gDN(X,Y)} 
k >~ N ~ y~  D(k) 

<~C(r ~ k-4k2+elogk] 
k>~N ~ 

~< C(r N ( ' -  1)~ log N 

These two bounds are of the same order of magnitude when 3 e ( e - 1 ) =  
(7 + 3e)c~ - 1, i.e., c~ = 1/10, and that order of magnitude is N -~176 log N- 
Fixing e at slightly less than 1/11, to accommodate the logarithmic factor, 
finishes the proof. | 
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